Trie
CS 251 - Data Structures
and Algorithms

| Note:
Slides complement the
discussion in class

O

@) O

@ ©

Standard Trie
Pattern matching data
structure

PATRICIA
Yep, that is the name

Table of Contents

01

Standard Trie

tttttttttttttttttttttttttttt

Trie

A trie (pronounced “try”) is a tree-based
data structure for storing strings in order
to support fast pattern matching.

Trie Operations

Given a collection S of strings, all defined with the same
alphabet X:

. Efficiently search for a pattern string P (i.e., pattern
matching)

.. Efficiently search for all strings in S that contains a pattern
string P as a prefix (i.e., prefix matching)

Standard Trie

A standard trie for a set of strings S is an
ordered tree such that:

e The children of a node are
alphabetically ordered.

e The paths from the external nodes to
the root yield the strings of S.

e Assumption: nostringw € Sisa

prefix of another stringin S.

Constructing a Standard Trie

The number of children of the root node is the number of distinct first
letters in all the words in the input string.

Example: How many children would the root of a standard trie have given
the following sets of strings?

o S ={apple, aardvark, animal, awesome}
o S={xylophone, zebra, penquin, violin, yellow}
o S={CAGT, AGTC, GATC}

Constructing a Standard Trie

Recall the assumptions that no string in S is a prefix of another stringin S.

ToinsertastringXinatrieT:

Try to trace the path associated with X in T'.

If you reach an external node, you have found X, so update the node to
reflect the location of this instance.

Else, you are stopped at an internal node, and you must create a new
chain of node descendants for the rest of X.

Build it!

S ={bear, bell, bid, bull, buy, sell, stock, stop}

10

Add “be”

ll

Problematic Assumption

Assumption: no stringinw € S is a prefix
of another string in S.

0: What if we have a string that is a prefix
2 i of another string in S?

A: Append an'S'to each stringinw € S.

Trie Analysis (Space)

Let T be a standard trie storing a collection S
of |S| strings of total lengthn =) ,cs|w|
from an alphabet X of size d.

e Everyinternal node of T has at most d

- : children.
| 0 e T has|S| external nodes.
e The height of T is equal to the length of
J L p the longest string in S.
) @ S e The number of nodes of T is O (n).

Trie Analysis (Time)

Search, Insert, and delete time complexity?

S Generally speaking: O (L), where L is the
average length of the stringsin T.
e t
| : For a single string w: O(|w])
I C p
S N « S

Word Matching in a Trie

slele a blelalr]|? slel|l]]l s|tlolc|k]|!
O 1 2 3 4 5 6 7 8 9 1011 1213 14 1516 17 18 19 20 21 22 23

s|lele a blufl]|1]|? bluly s|tlo]c|k]|!
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
bli|d s|tloflc|k]! bli1]|d s|{tloflc|k]!
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

hje|a]|r t|hl|e ble|l|T]? s|{tlo|p]!
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 8

17,40,51,62

Tamassia & Goodrich. Data structures and Algorithms in C++

02

PATRICIA

eeeeeeeeeeeeeeeee

How would you improve this trie? ©\@/

17

How would you improve this trie? ©\@/

18

PATRICIA Trie

Practical AlgoriThm to Retrieve
Information Coded In Alphanumeric

Also known as Compressed trie. PATRICIA
is a variant of a Radix Tree.

Motivation: Ensure that each internal
node has at least two children.

Method: Compress chains of single-child
nodes into individual edges.

https://www.youtube.com/watch?v=nEpt_EIal-c

PATRICIA Definitions

Let T be a standard trie. An internal node
v € T isredundant if v has one child and
is not the root.

How many redundant nodes there are in
this trie?

A chain of k > 2 edges (vy, v1) (v, v5) ...
(vi—q, vy) is redundant if:
e vy;isredundantfori=1..k—1
e v, and vy are not redundant.

01 2 3 4

S[0] =
St =
S121 =
st31= [s]tJoe]k]
S141 =
SIsj= [bfuly]|
ste]= [b]i]d]
SI71 =
181 =
191 =

Tamassia & Goodrich. Data structures and Algorithms in C++

1,2,3

Compact Representation

8,2,3

4,2,3

5,2,2

0,2,2

9,3,3

21

S[o]= |s|e @

S[ij= |[blejalr (») (W)

sr= [T QO TR O @
e O SR O B 1 BN O S P ORI (R O (0
S[4]= [blu|1]1 47,58 36 0,24 niNo -
S[s]= |bjuly 6 78 30 69 12 84
Se]= |b|i|d 17,40,51,62

S[7]= |hle|al|r

S[81= [ble|1]1

S9]= |s|t]|o]p

1,2,3 8,2,3 4,2,3 5,2,2 0,2,2 2,2,3 3,3,4 9,3,3

22

Tamassia & Goodrich. Data structures and Algorithms in C++

Search “ear”, “to”, “id", “top

1,2, 3] 8,2, 3] 4,2, 3] 15,2,2] {0,2,2]

Tamassia & Goodrich. Data structures and Algorithms in C++

n

2,2, 3]

13,3, 4|

l9,3, 3]

23

We tried!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

24

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Trie
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Standard Trie
	Slide 5: Trie
	Slide 6: Trie Operations
	Slide 7: Standard Trie
	Slide 8: Constructing a Standard Trie
	Slide 9: Constructing a Standard Trie
	Slide 10: Build it!
	Slide 11: Add “be”
	Slide 12: Problematic Assumption
	Slide 13: Trie Analysis (Space)
	Slide 14: Trie Analysis (Time)
	Slide 15: Word Matching in a Trie
	Slide 16: PATRICIA
	Slide 17: How would you improve this trie?
	Slide 18: How would you improve this trie?
	Slide 19: PATRICIA Trie
	Slide 20: PATRICIA Definitions
	Slide 21: Compact Representation
	Slide 22
	Slide 23: Search “ear”, “to”, “id”, “top”
	Slide 24: We tried!

