
Trie
CS 251 - Data Structures 

and Algorithms



Note:
Slides complement the 

discussion in class

2



Table of Contents
Pattern matching data 
structure

Standard Trie

PATRICIA
Yep, that is the name

01

02

3



Standard Trie
01

Pattern matching data structure

4



Trie

A trie (pronounced “try”) is a tree-based 
data structure for storing strings in order 
to support fast pattern matching.

5

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k



Trie Operations

Given a collection 𝑆 of strings, all defined with the same 
alphabet Σ:

1. Efficiently search for a pattern string 𝑃 (i.e., pattern 
matching)

2. Efficiently search for all strings in 𝑆 that contains a pattern 
string 𝑃 as a prefix (i.e., prefix matching)

6



Standard Trie

A standard trie for a set of strings 𝑆 is an 
ordered tree such that:

● The children of a node are 
alphabetically ordered.

● The paths from the external nodes to 
the root yield the strings of 𝑆.

● Assumption: no string 𝑤 ∈ 𝑆 is a 
prefix of another string in 𝑆.

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k

7



Constructing a Standard Trie

The number of children of the root node is the number of distinct first 
letters in all the words in the input string.

Example: How many children would the root of a standard trie have given 
the following sets of strings?

● 𝑆 = {apple, aardvark, animal, awesome}
● 𝑆 = {xylophone, zebra, penguin, violin, yellow}
● 𝑆 = {CAGT, AGTC, GATC}

8



Constructing a Standard Trie

Recall the assumptions that no string in 𝑆 is a prefix of another string in 𝑆.

To insert a string 𝑋 in a trie 𝑇:
● Try to trace the path associated with 𝑋 in 𝑇.
● If you reach an external node, you have found 𝑋, so update the node to 

reflect the location of this instance.
● Else, you are stopped at an internal node, and you must create a new 

chain of node descendants for the rest of 𝑋.

9



Build it!

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k
10

𝑆 = {bear, bell, bid, bull, buy, sell, stock, stop}



Add “be”

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k
11



Problematic Assumption

Assumption: no string in 𝑤 ∈ 𝑆 is a prefix 
of another string in 𝑆.

Q: What if we have a string that is a prefix 
of another string in 𝑆?
A: Append an ‘$’ to each string in 𝑤 ∈ 𝑆.

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k$ $

$

$

$

$

$

$

12



Trie Analysis (Space)

Let 𝑇 be a standard trie storing a collection 𝑆
of 𝑆 strings of total length 𝑛 = σ𝑤∈𝑆 𝑤
from an alphabet Σ of size 𝑑.

● Every internal node of 𝑇 has at most 𝑑
children.

● 𝑇 has 𝑆 external nodes.
● The height of 𝑇 is equal to the length of 

the longest string in 𝑆.
● The number of nodes of 𝑇 is 𝑂(𝑛).

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k$ $

$

$

$

$

$

$

13



Trie Analysis (Time)

Search, Insert, and delete time complexity?

Generally speaking: 𝑂(𝐿), where 𝐿 is the 
average length of the strings in 𝑇.

For a single string 𝑤: 𝑂 𝑤

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k$ $

$

$

$

$

$

$

14



Word Matching in a Trie

Tamassia & Goodrich. Data structures and Algorithms in C++ 15



PATRICIA
02

Yep, that is the name

16



How would you improve this trie?

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k
17



How would you improve this trie?

b

e u

y

s

par ll

id

ll

ell to

ck

18



PATRICIA Trie

Practical AlgoriThm to Retrieve 
Information Coded In Alphanumeric

Also known as Compressed trie. PATRICIA 
is a variant of a Radix Tree.

Motivation: Ensure that each internal 
node has at least two children.

Method: Compress chains of single-child 
nodes into individual edges.

!

b

e u

y

s

par ll

id

ll

ell to

ck

19

https://www.youtube.com/watch?v=nEpt_EIal-c


PATRICIA Definitions

Let 𝑇 be a standard trie. An internal node 
𝑣 ∈ 𝑇 is redundant if 𝑣 has one child and 
is not the root.

How many redundant nodes there are in 
this trie?

A chain of 𝑘 ≥ 2 edges (𝑣0, 𝑣1) (𝑣1, 𝑣2) … 
(𝑣𝑘−1, 𝑣𝑘) is redundant if:
● 𝑣𝑖 is redundant for 𝑖 = 1…𝑘 − 1
● 𝑣0 and 𝑣𝑘 are not redundant.

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

pc

k

20



Compact Representation

Tamassia & Goodrich. Data structures and Algorithms in C++ 21



Tamassia & Goodrich. Data structures and Algorithms in C++ 22



Tamassia & Goodrich. Data structures and Algorithms in C++ 23

Search “ear”, “to”, “id”, “top”



Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

We tried!
Do you have any questions?

24

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Trie
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Standard Trie
	Slide 5: Trie
	Slide 6: Trie Operations
	Slide 7: Standard Trie
	Slide 8: Constructing a Standard Trie
	Slide 9: Constructing a Standard Trie
	Slide 10: Build it!
	Slide 11: Add “be”
	Slide 12: Problematic Assumption
	Slide 13: Trie Analysis (Space)
	Slide 14: Trie Analysis (Time)
	Slide 15: Word Matching in a Trie
	Slide 16: PATRICIA
	Slide 17: How would you improve this trie?
	Slide 18: How would you improve this trie?
	Slide 19: PATRICIA Trie
	Slide 20: PATRICIA Definitions
	Slide 21: Compact Representation
	Slide 22
	Slide 23: Search “ear”, “to”, “id”, “top”
	Slide 24: We tried!

